提出一种基于人体轮廓表达的姿势学习框架来进行人体行为识别。通过一种基于Procrustes形状分析和局部保持投影的姿势特征表示方法,从人体运动视频中提取具有平移、旋转和放缩不变性的姿势特征,在保留人体姿势的局部流形结构的同时尽量提取子空间上的判别信息。针对该特征还提出了一种基于姿势字典学习的人体行为识别框架,对每类行为分别学习一个对应于该类的字典,通过串联所有类的字典来得到整个姿势字典;并通过最小重构误差准则来分类测试视频。在Weizmann和MuHAVi-MAS14数据集上的实验结果证实了该方