您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于字典学习的梯度重权非局部平均的强噪声图像去噪

  2. 为从强噪声图像中重构出原图像并减小误差,提出了一种基于梯度重权非局部平均的强噪声图像去噪算法。根据稀疏和冗余表示,基于K-SVD字典学习去噪算法可自适应从已知带噪图像中训练字典,但是字典固有的结构限制,导致强噪声图像去噪效果差。提出了基于字典学习的梯度重权非局部平均算法,该算法对图像结构赋予更紧约束,可以改善去噪性能。利用全变分法求解图像结构的梯度,给予图像边缘信息更高的权重,结合图像结构信息的相似性和稀疏性先验,求解优化后的逆问题。与传统字典去噪相比,所提出的算法对强噪声图像的去噪效果更好,并
  3. 所属分类:其它

    • 发布日期:2021-02-12
    • 文件大小:6291456
    • 提供者:weixin_38630612