您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于层次聚类的图像超分辨率重建

  2. 多字典学习的图像超分辨率重建过程中常见的K均值聚类、高斯混合模型聚类等方法会导致图像的重建质量欠佳且不稳定,针对这一问题提出一种新的基于层次聚类的图像超分辨率重建算法;首先对样本图像块提取特征并进行层次聚类,经改进的主成分分析方法训练得到K个字典,然后将测试图像裁切成若干图像块,并分别自适应匹配最合适的字典进行图像块重建,最后对整幅图像进行优化,以实现全局重建。结果表明:所提算法具有较高的可行性,能有效改善图像的重建质量;与传统算法相比,所提算法重建图像的峰值信噪比和结构相似度均有所增大。
  3. 所属分类:其它

    • 发布日期:2021-01-27
    • 文件大小:14680064
    • 提供者:weixin_38524871
  1. 基于集中稀疏表示的天文图像超分辨率重建

  2. 针对天文图像成像分辨率低的问题,基于集中稀疏表示图像超分辨率重建理论,提出一种层次聚类字典训练和相似约束的天文图像超分辨率重建算法。在字典训练阶段,采用新的基于层次的聚类算法对样本图像块进行归类,对每类图像块进行独立训练得到多个紧凑型字典。在图像重建阶段,通过抑制稀疏编码噪声提高稀疏编码系数的准确性,并利用图像的非局部自相似性对重建图像的稀疏系数进行合理估计。此外,通过构建非局部自相似正则化项对图像重建过程进行全局约束。仿真结果表明,该算法可以有效地改善天文图像的分辨率,重建图像在主观视觉效果和
  3. 所属分类:其它

    • 发布日期:2021-01-25
    • 文件大小:5242880
    • 提供者:weixin_38545923