点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 基于张量分解算法的增量降维研究
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
非负矩阵与张量分解及其应用
阵的低秩逼近是一种大规模矩阵低秩近似表示技术,是从大规模、复杂的数据中 寻求数据潜在信息的一种强有力方法。非负矩阵分解( Nonnegative MatrixFactorization, NMF)) 是矩阵的低秩逼近方法之一,它是指被分解的矩阵和分解结果矩阵的数值都 是非负的。由于该方法符合数据的真实物理属性,数据的可解释性强,分解结果能够表 示事物的局部特征,且模型符合人们对于客观世界的认识规律(整体是由局部组成的) 等优点, 模型和算法自提出以来得到了广泛研究和应用,已经被成功地应用到许多
所属分类:
算法与数据结构
发布日期:2017-11-11
文件大小:2097152
提供者:
puppet_love
基于张量分解算法的增量降维研究
基于张量分解算法的增量降维研究
所属分类:
其它
发布日期:2021-03-06
文件大小:103424
提供者:
weixin_38535364