尺度不变特征变换(SIFT)算法在图像匹配领域得到广泛应用,为降低其计算复杂度,提出了一种基于掩模(Mask)搜索的SIFT快速图像匹配算法。首先,分析图像的纹理信息,使用Harris算法的角点响应函数(CRF)对图像进行分区,将纹理复杂度较高的区域作为Mask并生成Mask金字塔,以减小特征点的搜索空间;其次,在极坐标系下建立7区域的圆形描述子,并降低其维度;最后,根据特征点极值类别进行同类匹配,以降低匹配复杂度。实验结果表明,采用Mask的特征搜索方法以损失较小匹配质量为代价,能够有效提升算