您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 自适应旋转区域生成网络的遥感图像舰船目标检测

  2. 针对遥感图像中舰船形状狭长、分布杂乱等特性导致检测难度增大的问题,提出了一种基于快速区域卷积神经网络(Faster R-CNN)的舰船目标检测方法。采用双路网络提取舰船目标特征,为了使特征图充分融合底层细节信息和高层语义信息,用多尺度融合特征金字塔网络(MFPN)进行特征融合;在候选框生成阶段,提出了自适应旋转区域生成网络(AR-RPN),集中在目标中心位置生成旋转锚框,以高效获取优质的候选框。为了提升网络对舰船目标的检测率,结合改进的损失函数对网络进行优化。在HRSC2016和DOTA舰船数据
  3. 所属分类:其它

    • 发布日期:2021-02-11
    • 文件大小:9437184
    • 提供者:weixin_38747087
  1. 基于改进旋转区域生成网络的遥感图像目标检测

  2. 为了实现遥感图像中目标的快速准确检测,解决遥感图像目标带有旋转角度的问题,在卷积神经网络理论的基础上,将旋转区域网络生成融入到Faster R-CNN网络中,提出了一种基于Faster R-CNN改进的遥感图像目标检测方法。相对于主流目标检测方法,本文算法针对遥感图像中的大多数目标都具有方向性不定且相对聚集的特点,在区域候选网络中加入了旋转因子,以便能够生成任意方向的候选区域;同时,在网络的全连接层之前增加一个卷积层,以降低其特征图参数,增强分类器的性能,避免出现过拟合。将本文算法与几种主流目标
  3. 所属分类:其它

    • 发布日期:2021-01-26
    • 文件大小:15728640
    • 提供者:weixin_38692100