您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于改进Faster R-CNN模型的交通标志检测

  2. 在汽车主动安全性能的研究背景下,对目标检测算法Faster R-CNN(Faster Region-Convolutional Neural Networks)进行改进,并将其应用于交通标志的检测。为此,提出一种多尺度卷积核的ResNeXt模型来设计检测算法的基础网络,并在此基础上采用多维特征融合的策略来满足交通标志小目标检测的需求。针对Faster R-CNN中的区域建议网络(RPN),通过拟合交通标志特征来设计锚框以获取更好的推荐区域,从而进一步降低误检率与漏检率。在TT100K数据集中的实
  3. 所属分类:其它

    • 发布日期:2021-02-21
    • 文件大小:10485760
    • 提供者:weixin_38601215
  1. 基于改进的Faster R-CNN目标检测算法

  2. 目标检测是计算机视觉研究中的热门问题,其中加速区域卷积神经网络(Faster R-CNN)对目标检测具有指导意义。针对Faster R-CNN算法在目标检测中准确率不高的问题,先对数据进行增强处理;然后对提取的特征图进行裁剪,利用双线性插值法代替感兴趣区域池化操作,分类时采用软非极大值抑制(Soft-NMS)算法。实验结果表明,该算法在PASCAL VOC2007、PASCAL VOC07+12数据集下的准确率分别为76.40%和81.20%,相较Faster R-CNN算法分别提升了6.50个
  3. 所属分类:其它

    • 发布日期:2021-02-13
    • 文件大小:2097152
    • 提供者:weixin_38720402
  1. 基于改进Faster R-CNN的子弹外观缺陷检测

  2. 为了实现子弹外观缺陷的自动检测,解决传统机器视觉方法在缺陷检测方面手工设计目标特征耗时和泛化能力差的问题,针对子弹外观缺陷数据集,采用K-means++算法改进锚框的生成方法,提出了Faster R-CNN子弹外观缺陷检测模型。该模型采用卷积神经网络,可以自动提取目标特征,泛化能力强。将该检测模型分别与ZFNet、VGG_CNN_M_1024和VGG16结合,结果表明,与VGG16结合的检测模型的检测精度高于其他两种模型方案,并且在所提算法的基础上,精度提升到了97.75%,速度达到28 fra
  3. 所属分类:其它

    • 发布日期:2021-01-26
    • 文件大小:7340032
    • 提供者:weixin_38667207