点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 基于改进的YOLOv3网络的实时目标检测
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
CvPytorch:CvPytorch是一个基于PyTorch的开源计算机视觉工具箱-源码
CvPytorch CvPytorch是一个基于PyTorch的开源COMPUTER VISION工具箱。 依存关系 Python 3.8 PyTorch 1.6.0 火炬视觉0.7.0 tensorboardX 2.1 楷模 影像分类 ( VGG )VGG:用于大规模图像识别的超深度卷积网络 ( ResNet )ResNet:用于图像识别的深度残差学习 ( DenseNet )DenseNet:紧密连接的卷积网络 ( ShuffleNet )ShuffleNet:一种用于移动设备
所属分类:
其它
发布日期:2021-03-19
文件大小:5242880
提供者:
weixin_42181319
基于改进的YOLOv3网络的实时目标检测
针对YOLOv3算法实时目标检测性能不佳的缺陷,提出了一种适应实时目标检测的改进网络结构以及视频目标检测的新方法。首先,提出的k-means-threshold(k-thresh)方法弥补了k-means算法对聚类中心初始位置十分敏感的问题,在包括三个类别的数据集中进行聚类分析选择合适的锚框;然后,将4倍下采样和8倍下采样特征图拼接融入第三个检测层,以提高对目标的检测精度,将YOLOv3算法的平均准确率均值提高了2%;最后,通过摄像头捕捉图像和前期得到的优秀检测数据来预测新图像的目标以及加入了重
所属分类:
其它
发布日期:2021-02-21
文件大小:15728640
提供者:
weixin_38663595
基于YOLO v3的红外末制导典型目标检测
导弹末制导飞行过程中,基于传统方法检测红外目标时准确率和实时性不足。针对这一问题,提出一种基于改进YOLO v3的红外末制导目标检测方法。从红外末制导背景出发,优化损失权重,提高了网络定位和分类能力。充分利用Adam算法自适应和动量法稳定的特点,运用“预训练”的思想,提出一种联合训练的方法,大幅提高模型检测精度。实验表明,改进算法在设计的红外目标数据集上进行训练和测试,检测效果理想,平均准确率达到77.89%,检测速度达到25 frame/s,虚警率和漏检率都得到有效降低。
所属分类:
其它
发布日期:2021-02-03
文件大小:5242880
提供者:
weixin_38697579
基于YOLO v3的机场场面飞机检测方法
小目标、飞机相互遮挡等难以检测的问题,对飞机检测的准确性及实时性提出很大的挑战。将实时性较高的YOLO v3算法应用到机场场面飞机检测领域,并提出两点改进:将骨干网络中的卷积层替换为空洞卷积,保持较高分辨率及较大感受野,提高模型对小目标检测的准确率;通过线性衰减置信得分的方式,对非极大值抑制(NMS)算法进行优化,以提升模型对被遮挡飞机的检测能力。结果表明,改进后的YOLO v3能够较好地检测小目标和遮挡飞机,且在保证实时性的前提下,将检测准确率从72.3%提高到83.7%。
所属分类:
其它
发布日期:2021-01-26
文件大小:10485760
提供者:
weixin_38629976
基于深度神经网络的扶梯异常行为检测
针对Tiny YOLOv3算法在扶梯异常行为检测时存在高漏检率和低准确率的问题,提出一种改进的Tiny YOLOv3网络结构用于扶梯异常行为检测。利用K-means++算法对数据集中的目标边框进行聚类,根据聚类结果优化网络的先验框参数,使训练网络在异常行为检测方面具有一定的针对性。利用多层深度可分离卷积提取深层次的语义信息,加深特征提取的网络结构;增加一个尺度用于低层语义信息的融合,改进原有算法预测层的结构;使用GPU进行多尺度训练,得到最优的权重模型,对扶梯异常行为进行检测。实验结果表明,优化
所属分类:
其它
发布日期:2021-01-26
文件大小:19922944
提供者:
weixin_38539705