您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于改进Faster R-CNN的子弹外观缺陷检测

  2. 为了实现子弹外观缺陷的自动检测,解决传统机器视觉方法在缺陷检测方面手工设计目标特征耗时和泛化能力差的问题,针对子弹外观缺陷数据集,采用K-means++算法改进锚框的生成方法,提出了Faster R-CNN子弹外观缺陷检测模型。该模型采用卷积神经网络,可以自动提取目标特征,泛化能力强。将该检测模型分别与ZFNet、VGG_CNN_M_1024和VGG16结合,结果表明,与VGG16结合的检测模型的检测精度高于其他两种模型方案,并且在所提算法的基础上,精度提升到了97.75%,速度达到28 fra
  3. 所属分类:其它

    • 发布日期:2021-01-26
    • 文件大小:7340032
    • 提供者:weixin_38667207