针对现有视频图像火焰检测算法前景提取不完整、准确率低和误检率高等问题,提出一种基于改进混合高斯模型(GMM)和多特征融合的视频火焰检测算法。首先针对背景建模,提出了自适应高斯分布数和学习率的改进GMM方法,以提高前景提取效果和算法实时性;然后利用火焰颜色特征筛选出疑似火焰区域,再通过融合改进局部二值模式纹理和边缘相似度特征用于火焰检测。基于支持向量机设计火焰融合特征分类器并进行对比实验,在公开数据集上的实验结果表明,所提算法有效提高了背景建模效果,火焰检测准确率可达到92.26%,误检率低至2.