您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于改进PSO算法和LS-SVM的短期电力负荷预测

  2. 针对电力负荷的小样本、非线性、高维数和局部极小点等问题,提出采用最小二乘支持向量机方法建模,以历史负荷、温度、湿度等数据作为输入量,对短期电力负荷进行预测;针对最小二乘支持向量机在建模中存在的参数选取问题,采用一种根据种群多样性信息来指导初始种群选取和避免粒子早熟收敛现象的改进粒子群优化算法来优化最小二乘支持向量机的惩罚因子和核参数。仿真结果表明,基于改进粒子群优化算法和最小二乘支持向量机的短期电力负荷预测方法较最小二乘支持向量机预测方法、基于基本粒子群优化算法和最小二乘向量机的预测方法具有更好
  3. 所属分类:其它

    • 发布日期:2020-05-29
    • 文件大小:257024
    • 提供者:weixin_38635323