您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于改进SSD的交通大场景多目标检测

  2. 现有目标检测算法在复杂大场景下多目标检测的精度和实时性难以平衡,为此,受深度神经网络卷积核形态启发,模仿了人眼视觉机理,改进了基于深度学习的目标检测框架,即单向多框检测器(SSD),提出了多目标检测框架——自适应感知SSD,将其专用于复杂大交通场景多目标检测。设计了由多形态、彩色Gabor构成的特征卷积核库,训练筛选最优特征提取卷积核组替换原有网络的低级卷积核组,从而提高检测精度;将单图像检测框架与卷积长短期记忆网络结合,通过瓶颈-长短期记忆层提炼传播帧间的特征映射,实现网络帧级信息的时序关联,
  3. 所属分类:其它

    • 发布日期:2021-02-12
    • 文件大小:10485760
    • 提供者:weixin_38711369