您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于机器学习对火焰温度场和CO

  2. 基于可调谐二极管激光吸收光谱法(TDLAS)和传统的反演重建算法对轴对称火焰的二维温度场和CO2浓度场的同步重建通常需要进行空间轴向和径向的多视线扫描式测量,测量系统相对复杂,反演重建效率不佳。本文基于4.2 μm 中红外TDLAS激光测量系统,针对轴对称层流扩散火焰,建立了能够同步反演火焰温度场和CO2浓度场的机器学习模型。与传统的反演重建方法相比,采用机器学习的反演模型只需要对火焰中心轴向进行扫描式测量就能同步、高效地重建轴对称层流扩散火焰的二维温度场和CO2浓度场,在相同的硬件条件下需要更
  3. 所属分类:其它

    • 发布日期:2021-02-21
    • 文件大小:3145728
    • 提供者:weixin_38551070