您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于果蝇算法和SVM的天然气日负荷预测

  2. 为了有效提高天然气短期负荷预测的准确度,提出了一种集成果蝇优化算法和SVM (Support Vector Machine)的混合优化策略FOA-SVM。首先,采用K-近邻算法对燃气负荷样本中离群数据进行查找定位,并用特征曲线法对离群数据进行修正。其次,综合考虑节假日、日期类型以及天气等影响因素,建立了基于SVM 的天然气日负荷预测模型,并采用果蝇优化算法优化SVM 的模型参数。最后,采用宁夏平罗县居民燃气日负荷数据和多种通用的定量误差评价方法,对建立的预测模型的可行性和有效性进行了验证。仿真结
  3. 所属分类:其它

    • 发布日期:2021-03-06
    • 文件大小:655360
    • 提供者:weixin_38614825