您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于概率神经网络改进的GrabCut算法

  2. 针对GrabCut算法在分割图像时效率低,且容易出现欠分割与过分割的问题,提出了一种基于概率神经网络(PNN)改进的GrabCut(PNN_GrabCut)算法。该算法用PNN模型替换GrabCut算法中的高斯混合模型(GMM)进行t-links权值计算,以提升算法的计算效率;通过构建前景和背景直方图,选取像素值出现频率较高的像素作为PNN模型的训练样本,以提高算法的分割精度。在公开的ADE20K数据集中选取图像进行分割实验,结果表明,PNN_GrabCut算法的分割精度优于其他对比算法,且效率
  3. 所属分类:其它

    • 发布日期:2021-02-11
    • 文件大小:7340032
    • 提供者:weixin_38537684