针对全卷积神经网络在图像分割中信息遗失、依赖固定权重导致分割精度低的问题,对U-Net结构进行改进并用于脑肿瘤磁共振(MR)图像的分割。在U-Net收缩路径上用注意力模块,将权重分布到不同尺寸的卷积层,有助于图像空间信息和上下文信息的利用;用残差紧密模块代替原有卷积层,能够提取更多的特征并促进网络收敛。基于BraTS(The Brain Tumor Image Segmentation Challenge)提供的脑肿瘤MR图像数据库,对提出的新模型进行验证,用Dice分数评估分割效果,获得肿瘤整