您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于深度学习U_Net模型的高分辨率遥感影像分类方法研究_许慧敏.caj

  2. 深度学习是近几年图像识别领域的一门新兴技术,能够自动学习影像深层次特征 从而进行准确的分类决策,为得到更好的高分辨率遥感影像分类结果带来新的契机
  3. 所属分类:讲义

    • 发布日期:2019-06-20
    • 文件大小:4194304
    • 提供者:qq_42805483
  1. 基于深度学习的高分辨率遥感影像分类研究

  2. 针对高空间分辨率遥感影像的分类问题,提出了基于深度学习的分类方法。该方法通过非下采样轮廓波变换计算影像的纹理特征,利用深度学习的常用模型—深度信念网络(DBN)对高分辨率遥感影像进行了基于光谱-纹理特征的分类,并与基于单源光谱信息的DBN 分类方法、支持向量机(SVM)分类方法、传统神经网络(NN)分类方法进行了比较分析。研究结果表明:相对于单源光谱信息,利用影像的光谱-纹理特征能够有效提高高分辨率遥感影像的分类精度;相对于SVM、NN 等分类方法,DBN 能够更加准确地挖掘高分辨率遥感影像的空
  3. 所属分类:其它

    • 发布日期:2021-02-11
    • 文件大小:2097152
    • 提供者:weixin_38524851
  1. 小样本的多模态遥感影像高层特征融合分类

  2. 在使用深度学习模型研究遥感影像地物分类问题时,某些地物的遥感影像可用于训练的样本很少。同时,多样化的遥感影像获取方式产生了大量不同空间分辨率的多模态遥感影像。融合这些多模态遥感影像,弥补样本量少导致分类精度低的缺陷,是小样本的遥感影像高精度分类领域中亟待解决的问题。针对上述问题,提出了考虑两种空间分辨率遥感影像相关关系的融合分类方法。首先,使用两个并行的深度学习网络分别提取两种空间分辨率影像的高层特征;其次,将提取到的高层特征通过融合方法进行融合;最后,得到融合后的高层特征作为输入,训练整个融合
  3. 所属分类:其它

    • 发布日期:2021-02-06
    • 文件大小:3145728
    • 提供者:weixin_38604395