点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 基于深度特征自适应融合的运动目标跟踪算法
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
目标跟踪算法综述_孟琭.pdf
目标跟踪一直以来都是计算机视觉领域的关键问题, 最近随着人工智能技术的飞速发展, 运动目标跟踪问题得到了越来越多的关注. 本文对主流目标跟踪算法进行了综述, 首先, 介绍了目标跟踪中常见的问题, 并由时间顺序对目标跟踪算法进行了分类: 早期的经典跟踪算法、基于核相关滤波的跟踪算法以及基于深度学习的跟踪算法. 接下来, 对每一类中经典的跟踪算法的原始版本和各种改进版本做了介绍、分析以及比较. 最后, 使用 OTB-2013 数据集对目标跟踪算法进行测试, 并对结果进行分析, 得出了以下结论: 1
所属分类:
图像处理
发布日期:2019-08-21
文件大小:1048576
提供者:
qq_28005905
基于深度特征自适应融合的运动目标跟踪算法
针对传统跟踪算法在复杂场景下抗遮挡能力和鲁棒性差的问题,提出一种基于深度特征自适应融合的运动目标跟踪算法。考虑到深层特征强鲁棒性和浅层特征高精度的优点,首先利用稀疏自编码器构建深度稀疏特征以提取目标特征,再根据相邻帧之间的关联信息和跟踪置信度对深度特征和纹理信息进行自适应融合以提高跟踪器的性能。为了提高跟踪算法鲁棒性的同时抑制跟踪漂移,当置信度低于设定阈值时,引入改进SURF算法对目标进行定位。实验结果表明:与主流跟踪算法相比,所提算法的跟踪精度高,在遮挡场景中具有良好的鲁棒性,并且能够有效抑制
所属分类:
其它
发布日期:2021-02-11
文件大小:9437184
提供者:
weixin_38544152