您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于混合损失函数的改进型U-Net肝部医学影像分割方法

  2. 针对现有方法对肝部医学影像分割上的不足,提出了一种用于对肝部医学影像进行分割的改进型U-Net结构。在上采样过程中只复制池化层特征,以减少信息丢失;同时引入残差网络对初步分割图像进行循环精炼,实现高层特征与低层特征的融合;利用对边界敏感的新型混合损失函数对图像进行细化处理,得到更为精确的分割结果。实验结果表明,肝脏图像和肝脏肿瘤图像的Dice系数分别为96.26%和83.32%。相比传统的U-Net,所提网络可以获得更高级的语义信息,进一步提高对肝脏和肝肿瘤图像的分割精度。
  3. 所属分类:其它

    • 发布日期:2021-02-11
    • 文件大小:11534336
    • 提供者:weixin_38540819