点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 基于混沌蚁群的神经网络速度辨识器研究
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
基于混沌蚁群的神经网络速度辨识器研究
近年来,由于神经网络的研究取得了长足的进展,基于BP神经网络模型的速度辨识方法得到了广泛研究,但其仍存在收敛速度慢、易陷入局部极小值等问题,因此,对神经网络的优化一直是当前的研究热点。本文将混沌引入到蚁群算法(Ant Colony Optimization,ACO)当中,以形成混沌蚁群算法(Chaos Ant Colony Optimization,CACO),从而提高了对于BP神经网络的优化效率和精度,解决了上述问题;同时,也在对异步电机直接转矩控制(DTC)转速辨识的仿真试验中,实现了对电机
所属分类:
其它
发布日期:2020-10-26
文件大小:173056
提供者:
weixin_38690407
通信与网络中的基于混沌蚁群的神经网络速度辨识器研究
0 引言 近年来,由于神经网络的研究取得了长足的进展,基于BP神经网络模型的速度辨识方法得到了广泛研究,但其仍存在收敛速度慢、易陷入局部极小值等问题,因此,对神经网络的优化一直是当前的研究热点。本文将混沌引入到蚁群算法(Ant Colony Optimization,ACO)当中,以形成混沌蚁群算法(Chaos Ant Colony Optimization,CACO),从而提高了对于BP神经网络的优化效率和精度,解决了上述问题;同时,也在对异步电机直接转矩控制(DTC)转速辨识的仿真试验
所属分类:
其它
发布日期:2020-11-07
文件大小:151552
提供者:
weixin_38692836