利用激光诱导击穿光谱(LIBS)技术与基于遗传算法优化的误差反向传播(GA-BP)神经网络对常见的9种塑料进行分类识别。通过激光诱导击穿塑料表面产生等离子光谱,用光谱仪对每种塑料采集100组光谱数据,以美国国家标准与技术研究院(NIST)的原子光谱数据库为参考,对主要的元素特征谱线进行精确标定。选取15条特征谱线进行分析,通过主成分分析(PAC)法对光谱数据进行降维处理,并建立GA-BP神经网络模型。实验结果表明,通过PCA法对数据进行降维后,GA-BP神经网络的识别效率得到很大提高,平均识别精