您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 数据运营思维导图

  2. 数据运营 作用&意义 知错能改,善莫大焉 —错在哪里,数据分析告诉你 运筹帷幄,决胜千里 —怎么做好“运筹”,数据分析告诉你 以往鉴来,未卜先知 —怎么发现历史的规律以预测未来,数据分析告诉你 工作思维 对业务的透彻理解是数据分析的前提 数据分析是精细化运营,要建立起体系化思维(金字塔思维) 自上而下 目标—维度拆解—数据分析模型—发现问题—优化策略 自下而上 异常数据 影响因素 影响因素与问题数据之间的相关关系 原因 优化策略 数据化运营7大经典思路 以目标为导向,学会数据拆分 细分到极致
  3. 所属分类:互联网

    • 发布日期:2018-04-26
    • 文件大小:68157440
    • 提供者:zzwin1006
  1. 2019数据运营思维导图

  2. 数据运营 作用&意义 知错能改,善莫大焉 —错在哪里,数据分析告诉你 运筹帷幄,决胜千里 —怎么做好“运筹”,数据分析告诉你 以往鉴来,未卜先知 —怎么发现历史的规律以预测未来,数据分析告诉你 工作思维 对业务的透彻理解是数据分析的前提 数据分析是精细化运营,要建立起体系化思维(金字塔思维) 自上而下 目标—维度拆解—数据分析模型—发现问题—优化策略 自下而上 异常数据 影响因素 影响因素与问题数据之间的相关关系 原因 优化策略 数据化运营7大经典思路 以目标为导向,学会数据拆分 细分到极致
  3. 所属分类:Java

    • 发布日期:2019-03-29
    • 文件大小:15728640
    • 提供者:qq_36826498
  1. 实例详解机器学习如何解决问题

  2. 随着大数据时代的到来,机器学习成为解决问题的一种重要且关键的工具。不管是工业界还 是学术界,机器学习都是一个炙手可热的方向,但是学术界和工业界对机器学习的研究各有 侧重,学术界侧重于对机器学习理论的研究,工业界侧重于如何用机器学习来解决实际问 题。我们结合美团在机器学习上的实践,进行一个实战(InAction)系列的介绍(带“机器 学习InAction系列”标签的文章),介绍机器学习在解决工业界问题的实战中所需的基本技 术、经验和技巧。本文主要结合实际问题,概要地介绍机器学习解决实际问题的整个流
  3. 所属分类:机器学习

    • 发布日期:2019-07-02
    • 文件大小:1048576
    • 提供者:abacaba
  1. 基于特征选择的过抽样算法的研究

  2. 为了提高不平衡数据集分类中少数类的分类精度,提出了基于特征选择的过抽样算法。该算法考虑了不同的特征列对分类性能的不同作用,首先对训练集进行特征选择,选出一组特征列,然后根据选出的特征列合成少数类样本,合成的每个少数类样本的特征由两部分组成,一部分是特征选择的特征列对应的特征,另一部分是按照 SMOTE 原理合成的特征。将基于特征选择的过抽样算法和 SMOTE 算法进行实验比较,结果表明基于特征选择的过抽样算法的性能优于 SMOTE 算法,能有效降低数据的不平衡性,提高少数类的分类精度。
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:623616
    • 提供者:weixin_38590541