您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于神经网络的平面磨削表面粗糙度预测模型

  2. 针对平面磨削的特点,采用正交试验方法获取学习样本,用BP神经网络建立砂轮径向切入进给量、轴向进给量和工作台进给速度与表面粗糙度关系模型,并用MATLAB实现对该模型的训练和仿真,由此得出表面粗糙度预测模型。结果显示:该模型具有较高的预测精度,在学习样本的采样区间平均预测误差为3.7%,最大预测误差为7.9%。为平面磨削表面粗糙度预测提供了一种新的可行方法。
  3. 所属分类:其它

    • 发布日期:2020-04-28
    • 文件大小:1048576
    • 提供者:weixin_38614812