行人检测是视频监控中的一个基本问题,近年来已经取得了长足的进步。 然而,由于源训练样本和目标场景中行人样本之间的差异,在某些公共数据集上训练的通用行人检测器的性能在应用于某些特定场景时会明显下降。 另外,在目标场景中手动标记样本也是一项昂贵且费时的工作。 我们提出了一种新颖的转移学习框架,该框架可以自动将通用检测器转移到特定于场景的行人检测器,而无需手动标记目标场景中的训练样本。 在我们的方法中,我们通过对目标场景使用通用检测器来获得初始检测结果,我们将该结果称为目标样本。 我们使用了几种线索来