您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. Robust Sparse Coding for Face Recognition人脸识别的鲁棒稀疏编码

  2. 人脸识别的鲁棒稀疏编码,的稀疏表示识别方法将稀疏表示的保真度表示为余项的L2范数,但最大似然估计理论证明这样的假设要求余项服从高斯分布,实际中这样的分布可能并不成立,特别是当测试图像中存在噪声、遮挡和伪装等异常像素,这就导致传统的保真度表达式所构造的稀疏表示模型对上述这些情况缺少足够的鲁棒性。而最大似然稀疏表示识别模型则基于最大似然估计理论,将保真度表达式改写为余项的最大似然分布函数,并将最大似然问题转化为一个加权优化问题,在稀疏表示的同时引入代表各像素不同权值的矩阵,使得该算法对于图像中包含
  3. 所属分类:互联网

    • 发布日期:2011-12-24
    • 文件大小:17825792
    • 提供者:lenny0633
  1. 论文研究-多信息融合的深度学习人脸表情识别算法研究.pdf

  2. 人脸表情识别作为人机交互系统的重要组成部分,在安防监控、人机交互等领域有广泛的应用,是计算机视觉的研究热点。传统的卷积神经网络方法一般提取单张人脸图像或者人脸标记点作为特征提取的输入数据,未能考虑到人脸全域的表情信息。提出了一种基于三通道多信息融合的深度学习人脸表情识别模型,以人脸图像表情平静到高峰时期标记点坐标的相对位移为输入,提取整个人脸表情图像特征信息,模型融合了稀疏自编码器以提高对边缘特征提取效率。该模型在CK 数据集上进行了训练和测试,实验结果表明,与该领域中的同类算法相比,该算法模
  3. 所属分类:其它

    • 发布日期:2019-09-16
    • 文件大小:990208
    • 提供者:weixin_38743737
  1. 基于深度卷积稀疏自编码分层网络的人脸识别技术

  2. 面对海量人脸图像识别,传统特征提取方法难以提取有效特征,造成人脸识别准确率较低。提出了一种鲁棒的人脸特征提取算法,即利用深度卷积稀疏自编码网络自动学习人脸中丰富且识别力高的特征。该方法将卷积操作融入自编码网络中,同时加入稀疏化思想,从而形成深度卷积稀疏自编码分层网络(hierarchical deep convolution sparse autoencoder,HDCSAE);用该网络自动提取海量人脸图像的高层鲁棒特征,并将提取的特征作为SVM分类器的输入得到分类结果。在FERET人脸数据库下
  3. 所属分类:其它

    • 发布日期:2020-04-19
    • 文件大小:710656
    • 提供者:weixin_38626858
  1. 基于稀疏编码的人脸识别算法

  2. 介绍了一种基于稀疏编码的人脸识别算法。先对10副自然图像应用稀疏编码,学习到基函数和图像稀疏表示的拟合分布的参数。在人脸识别中,用稀疏编码和已得到的基函数表示图像的稀疏,再经过拟合分布函数得到人脸图像的最终表示,然后应用多分类线性支持向量机(SVM)来完成识别算法。通过在人脸数据库上的实验表明,该算法具有很高的识别正确率。
  3. 所属分类:其它

    • 发布日期:2020-10-18
    • 文件大小:429056
    • 提供者:weixin_38685455