考虑到采用标志气体分析法对煤自燃火灾预报时特征维数较高、特征之间存在冗余且样本有限,文中提出基于粗糙集和支持向量机的采空区煤自燃火灾预报方法。该方法首先采用粗糙集对原始样本去除冗余和特征维数约简得到多组候选特征子集,然后对获得的多组候选特征子集利用支持向量机进行分类和性能评价,选取分类性能最好的一组特征子集用于设计支持向量机分类器,并对采空区遗煤自燃状态进行预测分析。实验选择大同矿区煤样自然发火实验数据,与4种典型分类预测算法的进行比较分析,实验结果表明文中算法预测准确率更高,训练速度更快。粗糙