您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 遥感影像监督分类与非监督分类的比较(pdf)

  2. 遥感影像分类是影像分析的一个重要内容,它是利用计算机通过对影像中不同地物的空间信息和光谱 信息进行分析,选择特征,并将特征空间划分为互不重叠的子空间,然后将影像中各个像元划归到子空间去. 目前国内国际上对影像分类的研究主要集中在应用具体的物理的、数学的方法等对影像进行的分类研究方 面[1 - 8 ] ,对于影像分类方法的研究,从不同的方面可以划分为不同的类型. 按照利用图像要素的不同,影像 分类大体可以分为三种:一是基于图像灰度值的分类,二是基于图像纹理的分类,三是基于多源信息融合的 分类[9
  3. 所属分类:网络基础

    • 发布日期:2010-05-14
    • 文件大小:188416
    • 提供者:forrestlc
  1. 【期刊】基于径向基函数神经网络的高光谱遥感图像分类

  2. 从径向基函数神经网络的理论出发, 针对高光谱数据的特点, 设计了有效的特征提取模型, 再与径向基函数神经网络的输入层连接, 建立了一个新的径向基函数神经网络的高光谱遥感影像分类模型, 并用国产OMISII 传感器获得的64 波段数据进行试验。首先进行了最小噪声分离变换, 提取了1~20 个分量的数据, 使用提取后的数据(20 维) 、提取后数据的纹理变换(20 维) 和主成分分析的前(20 维) , 组成了60 维向量数据进行分类处理, 这种分类器结构简单、容易训练、收敛速度快, 其分类精度达
  3. 所属分类:网络基础

    • 发布日期:2010-11-09
    • 文件大小:666624
    • 提供者:timeme
  1. 东北黑土区侵蚀沟遥感影像特征提取与识别

  2. 针对特定地物影像的识别,如何选取最能够有效描述该地物的特征是解决问题的关键。本文构建了耕地和侵蚀沟遥感影像的训练样本集,基于样本集分别提取了由光谱特征和纹理特征组成的浅层特征、SIFT特征经编码后得到的中层特征,以及利用卷积神经网络提取的深层特征;再基于不同层次的特征选用合适的分类器对遥感影像进行分类,识别出含有侵蚀沟的遥感影像,形成了一套针对侵蚀沟的特征提取与识别方法
  3. 所属分类:专业指导

    • 发布日期:2019-05-14
    • 文件大小:2097152
    • 提供者:qq_34795343
  1. 基于纹理特征的遥感影像神经网络分类

  2. 基于纹理特征的遥感影像神经网络分类,郭艳,赵银娣,遥感影像分类技术是遥感影像分析与解译的重要环节之一,具有广泛的应用前景。本文主要研究了利用融合影像和纹理特征相结合的分类
  3. 所属分类:其它

    • 发布日期:2020-02-25
    • 文件大小:658432
    • 提供者:weixin_38544625
  1. 基于深度学习的高分辨率遥感影像分类研究

  2. 针对高空间分辨率遥感影像的分类问题,提出了基于深度学习的分类方法。该方法通过非下采样轮廓波变换计算影像的纹理特征,利用深度学习的常用模型—深度信念网络(DBN)对高分辨率遥感影像进行了基于光谱-纹理特征的分类,并与基于单源光谱信息的DBN 分类方法、支持向量机(SVM)分类方法、传统神经网络(NN)分类方法进行了比较分析。研究结果表明:相对于单源光谱信息,利用影像的光谱-纹理特征能够有效提高高分辨率遥感影像的分类精度;相对于SVM、NN 等分类方法,DBN 能够更加准确地挖掘高分辨率遥感影像的空
  3. 所属分类:其它

    • 发布日期:2021-02-11
    • 文件大小:2097152
    • 提供者:weixin_38524851