针对微分法在有效消除光谱背景和基线漂移的同时会增加光谱噪声的问题,把最新发展的经验模态分解方法(EMD)引入到近红外光谱处理中来,以烟草的一阶导数近红外(NIR)光谱为研究对象,探讨经验模态分解在近红外光谱预处理中的应用,并与小波变换消噪效果进行了对比分析。结果表明,用基于经验模态分解去噪后的光谱进行分析,预测集的决定系数r2由去噪前的0.9705提高到0.9832,均方根误差(RMSEP)由去噪前的0.5606降为0.3310,比基于小波变换的分析结果略高。因此,经验模态分解方法对消除光谱的噪