DBSCAN是一种聚类算法,它可以报告任意形状的聚类和噪声,而无需将聚类的数量作为参数(例如,与其他聚类算法k -means不同)。 由于DBSCAN的运行时间具有二次增长顺序,即O(n 2),因此几十年来,有关提高其性能的研究受到了相当多的关注。 基于网格的DBSCAN是一种完善的算法,其复杂度在2D空间中提高到O(n log n),而在维数≥3时则需要(n 4/3)来求解。 但是,我们发现基于网格的DBSCAN存在两个问题:邻居爆炸和合并中的冗余,这使算法在高维空间中不可行。 在本文中,我们