您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于训练样本优化的字典稀疏MR重建算法

  2. 磁共振(MR)成像被广泛用于疾病诊断。 硬件成像受到分辨率的限制,并且高的辐射强度和磁性时间会伤害人体。 基于软件的图像超分辨率技术有望解决该问题,特别是通过基于稀疏重构的图像超分辨率具有良好的优异性能。 字典生成是影响超分辨率算法性能的关键问题,因为在字典生成过程中没有考虑潜在的区分性信息。 针对此问题,我们提出了针对MR稀疏超分辨率重建的训练样本优化字典学习算法。 提出了一种基于灰度一致性和梯度联合分集的字典表示方法,以选择最佳的图像进行字典训练。 在基于稀疏重建的MR成像框架下评估字典训练
  3. 所属分类:其它

    • 发布日期:2021-03-05
    • 文件大小:1048576
    • 提供者:weixin_38742124