离群检测在许多应用领域中显示出越来越高的实用价值,例如入侵检测,欺诈检测,电子商务中犯罪活动的发现等。 已经开发出许多用于离群值检测的技术,包括基于分布的离群值检测算法,基于深度的离群值检测算法,基于距离的离群值检测算法,基于密度的离群值检测算法和基于聚类的离群值检测。 频谱聚类作为近年来出现的竞争性聚类算法备受关注。 但是,它不能很好地扩展到现代大型数据集。 为了部分规避此缺点,在本文中,我们提出了一种受谱聚类启发的新的异常值检测方法。 我们的算法结合了kNN的概念和频谱聚类技术,通过在特征空