您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于连续偏振光谱技术与嵌入型灰色神经网络的稻种发芽率检测方法研究

  2. 针对稻种发芽率传统检测方法周期长,近红外光谱检测技术等无损检测方法受稻种自然颜色及含水量影响大的问题,通过连续偏振光谱结合嵌入型灰色神经网络(IGNN)的方法建立稻种发芽率预测模型。对检测连续偏振光谱运用经典模式分解(EMD)和小波包变换进行去噪处理,根据去噪效果选择EMD 去噪。利用主成分分析(PCA)提取去噪后的连续偏振光谱特征,结合偏最小二乘法回归(PLSR)、反向传播神经网络(BPNN)、径向基神经网络(RBFNN)和IGNN 分别构建稻种发芽率预测模型,建模结果显示10 min 检测时
  3. 所属分类:其它

    • 发布日期:2021-02-07
    • 文件大小:2097152
    • 提供者:weixin_38607971