您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 数据挖掘在各行业的应用论文

  2. 数据挖掘在各行业的应用论文 数据仓库与数据挖掘.caj 空间数据挖掘技术.caj 数据仓库与数据挖掘技术及其在科技情报业的应用前景.caj 相关案件的数据挖掘.caj 数据挖掘技术.caj 一种实时过程控制中的数据挖掘算法研究.caj EIS 环境下的数据挖掘技术的研究.caj 数据挖掘及其工具的选择.caj 数据挖掘技术与中国商业银行业务发展策略.caj 数据挖掘工具DMTools的设计与实现.caj 数据仓库、数据挖掘在银行中的应用.caj 基于信息熵的地学空间数据挖掘模型.caj 数据挖
  3. 所属分类:其它

    • 发布日期:2010-04-19
    • 文件大小:13631488
    • 提供者:liaosaien
  1. 基于遗传算法的入侵检测

  2. 采用遗传算法实现入侵检测系统,体现出遗传算法的优越性,能更好的发挥入侵检测的作用。
  3. 所属分类:其它

    • 发布日期:2010-05-11
    • 文件大小:786432
    • 提供者:tangtao1120
  1. 2011年全国电子信息技术与应用学术会议论文集

  2. 攀枝花太阳能开发利用技术路径探析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯肖亮,詹华庆(446) 基于多元回归模型视角下湖南省猪肉价格影响因素实证分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯张振华(451) 在线英语写作自动评价系统与大学英语写作教学的整合⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯王淑雯(455) 基于 LPC1768 的圆锤体同轴度检测系统的设计⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯黄莺(462) 运用Excel模拟运算表实现投资项目敏感性分
  3. 所属分类:其它

    • 发布日期:2012-01-03
    • 文件大小:12582912
    • 提供者:zhaocuiqin421
  1. 数据挖掘各行业应用论文

  2. 数据挖掘在各行业的应用论文 数据仓库与数据挖掘.caj 空间数据挖掘技术.caj 数据仓库与数据挖掘技术及其在科技情报业的应用前景.caj 相关案件的数据挖掘.caj 数据挖掘技术.caj 一种实时过程控制中的数据挖掘算法研究.caj EIS 环境下的数据挖掘技术的研究.caj 数据挖掘及其工具的选择.caj 数据挖掘技术与中国商业银行业务发展策略.caj 数据挖掘工具DMTools的设计与实现.caj 数据仓库、数据挖掘在银行中的应用.caj 基于信息熵的地学空间数据挖掘模型.caj 数据挖
  3. 所属分类:数据库

    • 发布日期:2013-06-20
    • 文件大小:13631488
    • 提供者:caiyewen1992
  1. 数据挖掘论文合集-242篇(part1)

  2. EIS 环境下的数据挖掘技术的研究.caj FCC油品质量指标智能监测系统的数据挖掘与修正技术.caj IDSS 中数据仓库和数据挖掘的研究与实现.caj InternetWeb数据挖掘研究现状及最新进展.caj Internet数据挖掘原理及实现.caj Min-Max模糊神经网络的应用研究.pdf OLAP与数据挖掘一体化模型的分析与讨论.caj OLAP和数据挖掘技术在Web日志上的应用.caj ON-LINE REDUCING MACHINING ERRORS IN BORING OP
  3. 所属分类:其它

    • 发布日期:2009-01-13
    • 文件大小:10485760
    • 提供者:night_furry
  1. 数据挖掘论文合集-242篇(part2)

  2. EIS 环境下的数据挖掘技术的研究.caj FCC油品质量指标智能监测系统的数据挖掘与修正技术.caj IDSS 中数据仓库和数据挖掘的研究与实现.caj InternetWeb数据挖掘研究现状及最新进展.caj Internet数据挖掘原理及实现.caj Min-Max模糊神经网络的应用研究.pdf OLAP与数据挖掘一体化模型的分析与讨论.caj OLAP和数据挖掘技术在Web日志上的应用.caj ON-LINE REDUCING MACHINING ERRORS IN BORING OP
  3. 所属分类:其它

    • 发布日期:2009-01-13
    • 文件大小:10485760
    • 提供者:mathlf2015
  1. 数据挖掘论文合集-242篇(part3)

  2. EIS 环境下的数据挖掘技术的研究.caj FCC油品质量指标智能监测系统的数据挖掘与修正技术.caj IDSS 中数据仓库和数据挖掘的研究与实现.caj InternetWeb数据挖掘研究现状及最新进展.caj Internet数据挖掘原理及实现.caj Min-Max模糊神经网络的应用研究.pdf OLAP与数据挖掘一体化模型的分析与讨论.caj OLAP和数据挖掘技术在Web日志上的应用.caj ON-LINE REDUCING MACHINING ERRORS IN BORING OP
  3. 所属分类:其它

    • 发布日期:2009-01-13
    • 文件大小:5242880
    • 提供者:hutingt77
  1. 研究论文-基于自适应遗传算法的入侵检测特征选择方法.pdf

  2. 针对网络入侵检测所处理数据特征维数高、入侵检测系统负荷大、检测速度慢等问题,提出了一种将自适应遗传算法与信息增益相结合的特征选择方法,并采用基于支持向量机的分类器作为自适应遗传算法中适应度函数的计算与特征选择结果性能的评价。实验采用入侵检测KDDCUP99数据集,将原41维特征属性约简为13维,通过和自适应遗传算法,回溯搜索算法与信息增益相结合的特征选择方法等2种算法的对比实验,表明基于自适应遗传算法的特征选择算法具有更优的解空间寻优能力和特征约简能力。
  3. 所属分类:其它

    • 发布日期:2019-08-07
    • 文件大小:622592
    • 提供者:weixin_39841856
  1. 基于遗传算法的入侵检测系统特征选择方法研究

  2. 在入侵检测系统中,分类器所选取的特征对系统的性能有很大的影响,大量冗余和不相关特征的存在会降低系统的正确性和实时性,因此如何选取出最优特征组合成为研究的热点问题。在研究当前各种特征选择方法的基础上,提出了一种基于遗传算法的特征组合选择方法。使用遗传算法搜索特征空间,依据Fisher准则计算各种特征组合的分类能力,根据计算结果对特征组合进行选择、交叉、变异,通过多次反复迭代最终选取出最优的特征组合。在实验中分别使用全部特征和选取出的最优特征组合的进行分类验证,最终证明选取出的最优特征组合能够使入侵
  3. 所属分类:其它

    • 发布日期:2020-05-09
    • 文件大小:527360
    • 提供者:weixin_38606202
  1. 基于遗传算法的多决策树融合研究

  2. 决策树是数据挖掘领域的一种有效方法,但基于决策树挖掘的入侵检测系统存在着检测性能低和数据挖掘效率不高等问题,针对这些问题,该文将遗传算法应用到决策树挖掘策略中。其思想是其思想就是将海量数据集分成若干子数据集,在子数据集上进行挖掘形成不同的子决策树,然后用遗传算法将多棵子决策树进行融合形成最优判断。文章最后通过实验证明该方法的有效性。
  3. 所属分类:其它

    • 发布日期:2020-07-04
    • 文件大小:203776
    • 提供者:weixin_38629939
  1. 通信与网络中的改进PSO算法在LSSVM入侵检测模型的应用

  2. 粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),有Eberhart博士和kennedy博士发明。源于对鸟群捕食的行为研究。PSO同遗传算法类似,是一种基于叠代的优化工具。系统初始化为一组随机解,通过叠代搜寻最优值。但是并没有遗传算法用的交叉(crossover)以及变异(mutation)。而是粒子在解空间追随最优的粒子进行搜索。同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练,模糊系统控
  3. 所属分类:其它

    • 发布日期:2020-10-22
    • 文件大小:330752
    • 提供者:weixin_38643127
  1. 一种粗糙集遗传算法在入侵检测中的应用

  2. 分析了目前入侵检测系统运行机制和不足,提出了一种基于粗糙集的遗传算法,通过粗糙集属性精简遗传算法种群,并在变异操作中将优异个体朝重要属性加速变异,降低算法时空复杂度。通过实验验证,该算法收敛速度快,检测率高,能很好地应用于目前入侵检测系统之中。
  3. 所属分类:其它

    • 发布日期:2020-10-17
    • 文件大小:446464
    • 提供者:weixin_38635323
  1. 改进PSO算法在LSSVM入侵检测模型的应用

  2. 粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),有Eberhart博士和kennedy博士发明。源于对鸟群捕食的行为研究。PSO同遗传算法类似,是一种基于叠代的优化工具。系统初始化为一组随机解,通过叠代搜寻值。但是并没有遗传算法用的交叉(crossover)以及变异(mutation)。而是粒子在解空间追随的粒子进行搜索。同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其
  3. 所属分类:其它

    • 发布日期:2021-01-19
    • 文件大小:343040
    • 提供者:weixin_38752074