您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于遗传算法的煤与瓦斯突出影响因素研究

  2. 针对采用BP神经网络对煤与瓦斯突出预测时的过学习现象,引入遗传算法对煤与瓦斯突出的影响因素进行选择,并建立了以筛选出的变量作为输入的优化BP网络预测模型.遗传算法中染色体采用二进制编码,个体适应度函数引入了惩罚函数,并对基本遗传算法的遗传操作算子进行了一定的改进,最后利用平煤八矿煤与瓦斯突出的实测样本,在MAT-LAB2009b环境中对上述算法进行仿真研究.结果表明,以遗传算法筛选出的变量作为输入建立的预测模型的输出结果的拟合效果变好,预测精度提高,建模时间缩短.
  3. 所属分类:其它

    • 发布日期:2020-05-22
    • 文件大小:342016
    • 提供者:weixin_38656064
  1. 煤与瓦斯突出强度的IGA-LSSVM预测模型

  2. 针对煤矿开采中煤与瓦斯突出强度的预测问题,利用免疫遗传算法和最小二乘支持向量机相结合的方法,选取最大主应力、瓦斯压力、瓦斯含量、顶板岩性、距断裂距离、煤层厚度、开采垂直深度、绝对瓦斯涌出量、相对瓦斯涌出量等9个主要影响因素.对相关程度较高的因素进行因子分析,提取公共因子作为IGA-LSSVM模型的输入,建立基于因子分析和IGA-LSSVM的煤与瓦斯突出强度的预测模型.利用实测的14组数据作为学习样本,训练预测模型.另外5组数据作为测试样本,使用所得模型进行预测.研究结果表明:经过免疫遗传算法优化
  3. 所属分类:其它

    • 发布日期:2020-05-29
    • 文件大小:671744
    • 提供者:weixin_38723236