您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于随机森林与D-S 证据合成的多源遥感分类研究

  2. 激光扫描与测距系统(LIDAR)所获取的点云数据能够表达地物的三维信息,而光谱相机能够获得同场景的四个波段的多光谱信息。二者从不同的侧面表现了地物的特征,但不同特征对分类精度的贡献具有较大的差异。提取不同类型的地物特征,将特征分成四组;以随机森林为分类框架,得到不同特征子集的重要性测度和每个像元对各类别的隶属度;提出自适应D-S 证据方法对各特征子集的分类证据进行合成,实现地物类别信息提取。充分利用两分类器的优点挖掘分析遥感不确定性信息,实验结果表明,分类精度达到90%,能够达到应用要求。但通过
  3. 所属分类:其它

    • 发布日期:2021-02-04
    • 文件大小:2097152
    • 提供者:weixin_38723516