点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 基于随机森林分类器的基于油菜籽叶颜色和纹理特征的主要营养元素缺乏症诊断
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
基于随机森林分类器的基于油菜籽叶颜色和纹理特征的主要营养元素缺乏症诊断
无损和准确的氮缺乏症诊断技术是采用针对具体地点的补救措施的关键。 基于油菜叶片特征的变异分类,提出了一种主要元素养分缺乏的智能诊断技术。 建立了四种营养素缺乏的实验图像库,即正常,氮缺乏,磷缺乏和钾缺乏。 通过使用GrabCut算法将具有显着特征的图像分为前景和背景。 前景用于分别使用颜色矩和灰度共现矩阵来提取颜色和纹理特征。 基于离散度和主成分分析对初始特征进行归一化和过滤,从而减小特征维,从而获得关键特征。 降维提高了诊断的速度和准确性。 具有已知元素不足的图像的关键特征被导入到随机森林分类
所属分类:
其它
发布日期:2021-03-14
文件大小:332800
提供者:
weixin_38640072