您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于图像分割和自适应支撑权重的立体匹配算法

  2. 双目立体匹配是计算机视觉中研究的重点,针对立体匹配在深度不连续、低纹理和场景重复区域容易匹配出错的问题,提出了一种基于图像分割和改进的自适应支撑权重的立体匹配算法。该方法首先根据颜色相似性、欧式距离相似性、梯度相似性和自定义颜色内相关相似性定义初始的匹配代价关系,然后利用mean shift算法分割出不同深度区域的匹配点,根据匹配点所在的深度区域进行匹配代价重定义。在代价聚合的过程中,为了消除光照和噪声的影响,对待匹配点进行rank变换后,再进行视差值的计算,从而得到一个更加准确的视差结果。最后
  3. 所属分类:其它

    • 发布日期:2021-02-23
    • 文件大小:3145728
    • 提供者:weixin_38714653
  1. 基于颜色内相关和自适应支撑权重的立体匹配算法

  2. 立体匹配的关键问题是确定一个合适的匹配代价关系,颜色内相关作为像素点的固有特性,能够有效地反映出匹配像素点间的微小差异。对传统的自适应支撑权重 (ASW)方法进行改进,提出了一种基于颜色内相关和自适应支撑窗口的立体匹配算法,该方法结合了颜色相似性、欧式距离相似性和颜色内相关相似性来确定匹配窗口内像素点的权重大小。同时为了消除光照不同对图像匹配结果的影响,将匹配点先进行rank变换后再进行匹配代价关系计算。对计算出的初始视差图进行三步优化,剔除由图像遮挡、重复等引起的不同视差错误,从而得到最终的视
  3. 所属分类:其它

    • 发布日期:2021-02-05
    • 文件大小:1048576
    • 提供者:weixin_38684743