您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于高光谱成像技术结合堆栈自动编码器-极限学习机方法的苹果硬度检测

  2. 将堆栈自动编码器(SAE)与极限学习机(ELM)联合,建立了深度神经网络预测模型(SAE-ELM)。利用苹果高光谱图像提取出的光谱数据,对深度神经网络的权值和阈值进行了初始化和微调。与传统ELM模型预测结果相比,SAE-ELM的预测集决定系数和残留预测偏差分别从0.7345和1.968提升至0.7703和2.116,预测集方均根误差从1.6297降至1.2837。研究结果表明:深度学习网络SAE-ELM模型的预测性能优于传统的ELM模型,将其用于预测苹果硬度是可行的。
  3. 所属分类:其它

    • 发布日期:2021-02-13
    • 文件大小:4194304
    • 提供者:weixin_38663169