点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 基于高斯过程分步分类的阿尔茨海默病辅助诊断
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
基于高斯过程分步分类的阿尔茨海默病辅助诊断
脑影像数据维数高且有效训练样本少是影响阿尔茨海默病计算机辅助诊断性能的重要因素。对此小样本分类问题,以高斯过程为基础设计了 一种分步的分类方法:先对测试样本利用高斯过程进行初步分类 ;依据后验概率筛选类别归属确定性强的样本作为补充参与训练,再对其余错分可能性相对较高的样本重新进行分类。利 用 ADNI数据库磁共振影像的分类实验表明,二次分类倾向于增大样本归属于真实类别的后验概率、提高类别判定的确定性,分类性能优于常规的高斯过程分类方法和支持向量机。
所属分类:
其它
发布日期:2021-03-07
文件大小:2097152
提供者:
weixin_38696339