您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于卡尔曼滤波及神经网络的瓦斯涌出量预测

  2. 为解决当前瓦斯涌出量预测过程中存在的因影响因素过多、预测指标与瓦斯涌出量之间非线性关系及其自身时变性等特点而导致预测精度降低的问题,采用SPSS因子分析法对瓦斯涌出量影响因素进行分析降维,将得到的预测指标由构建的BP神经网络与卡尔曼滤波相结合的瓦斯涌出量预测模型进行预测。研究结果表明:采用因子分析的方法能够有效筛选瓦斯涌出量影响因素,并得到了预测指标,降低了预测模型预算复杂度;经过BP神经网络与卡尔曼滤波耦合瓦斯涌出量预测模型,其预测精度明显高于直接采用神经网络模型预测的结果,预测性能明显改善,
  3. 所属分类:其它

    • 发布日期:2020-04-19
    • 文件大小:1048576
    • 提供者:weixin_38571544
  1. 基于偏最小二乘回归的回采工作面瓦斯涌出量预测模型

  2. 针对回采工作面瓦斯涌出量回归建模过程中自变量间出现多重共线性问题,提出应用偏最小二乘回归(PLS)对瓦斯涌出量进行预测的建模思路。选取地质及采矿2个方面共12个参数指标作为回归因子,利用15个瓦斯涌出实例为建模样本,建立了回采工作面瓦斯涌出量的偏最小二乘回归模型。建立的模型对训练样本拟合效果良好,最大误差为6.09%,平均误差仅为2.06%;对其余几个案例进行预测,精度优于主成分分析和BP神经网络,与最小二乘-支持向量机模型相当。研究表明,基于偏最小二乘回归进行工作面瓦斯涌出量预测是一种有效可行
  3. 所属分类:其它

    • 发布日期:2020-05-29
    • 文件大小:497664
    • 提供者:weixin_38703794
  1. 基于BP神经网络的瓦斯涌出量预测的研究

  2. 应用神经网络理论知识,结合贵州某矿的实测数据,建立了基于BP神经网络的瓦斯涌出量预测模型,通过数学软件MATLAB7.0对瓦斯涌出量进行预测,预测结果与实际涌出量吻合度较高,说明了BP神经网络在瓦斯涌出量预测上的可行性。为煤矿的安全生产中瓦斯量的预测提供了一种新的途径。
  3. 所属分类:其它

    • 发布日期:2020-06-18
    • 文件大小:123904
    • 提供者:weixin_38721811
  1. 基于BP神经网络分源预测综采面瓦斯涌出量研究

  2. 为了提高综采工作面瓦斯涌出量的预测精度,根据综采工作面瓦斯来源的分析,在瓦斯分源预测方法的基础上,融合神经网络预测技术,建立BP神经网络分源预测模型。结合某矿1242(1)工作面地质条件和开采技术条件,利用BP神经网络分源预测模型对工作面瓦斯涌出量进行了预测,结果表明,BP神经网络分源预测模型预测精度能满足现场需求,与分源法相比较,在综采工作面瓦斯涌出量预测中方便简洁而且具有很高可信度,其应用前景更广泛。
  3. 所属分类:其它

    • 发布日期:2020-06-23
    • 文件大小:1048576
    • 提供者:weixin_38670208
  1. 基于RBF神经网络的瓦斯涌出量预测

  2. 传统瓦斯涌出量预测方法存在一定的局限性,预测精度不能满足要求。为了提高瓦斯涌出量预测精度,采用RBF神经网络对瓦斯涌出量相关数据进行建模。通过训练13组样本,对5组数据进行预测,分析了隐层神经元个数对预测精度的影响,并与同结构的BP神经网络预测结果进行了对比。研究结果证明了RBF神经网络在瓦斯涌出量预测中的有效性。
  3. 所属分类:其它

    • 发布日期:2020-07-05
    • 文件大小:241664
    • 提供者:weixin_38544978
  1. 基于多元线性回归与BP神经网络的矿井瓦斯预测模型应用

  2. 矿井瓦斯涌出量受众多因素的影响。经研究表明,煤层埋藏深度、煤层厚度、煤层瓦斯含量、煤层间距、日进度及日产量是影响瓦斯涌出的主要因素。利用多元线性回归和BP神经网络理论,分别对矿井瓦斯涌出量进行了预测,最后建立了多元线性回归与BP神经网络的组合预测模型。该模型兼顾了多元回归分析的非线性特性和神经网络的时序特性,通过具体的实例研究,对比了各种方法的预测结果。结果显示,组合预测的结果与实际有较高的拟合度,可靠性高。
  3. 所属分类:其它

    • 发布日期:2020-07-04
    • 文件大小:335872
    • 提供者:weixin_38614417
  1. 瓦斯突出模型预测控制的应用研究

  2. 煤体瓦斯涌出量的动态变化是一个复杂的非线性系统,传统的瓦斯监测方法准确率较低。针对该问题,文章提出了一种基于BP人工神经网络模型的瓦斯突出危险性预测控制方法。该方法运用BP人工神经网络预测模型对输入的多组样本进行训练学习、建立预测准则,并以此辨识瓦斯突出危险性类型。仿真结果表明,该方法有效解决了传统的瓦斯突出预测模型在事故预测中误差大、稳定性差的缺陷,提高了预测精度。
  3. 所属分类:其它

    • 发布日期:2020-07-17
    • 文件大小:411648
    • 提供者:weixin_38629042