您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于CRF的电子病历命名实体识别.rar

  2. 随着医疗信息化的发展,医院产生了大量的医疗数据信息,积累了庞大的医疗电子病历数据。电子病历(EMR)是具有非结构化句子和多种概念表达,为医学信息提取提供了丰富的信息。然而,庞大的数据信息严重影响处理效率,因此提取电子病历中的命名实体成为研究的热点问题。为提高医院对复杂数据的处理效率,减轻工作人员的压力,本文提出了一种基于条件随机场(CRF)模型和特征模板结合的算法,来识别中文电子病历中的命名实体单元,识别准确率可以达到92.9%,可以有效地识别电子病历命名实体。基于本文采用的方法可以来结构化电子
  3. 所属分类:机器学习

    • 发布日期:2020-04-12
    • 文件大小:13631488
    • 提供者:m0_37520426
  1. 基于CRF的电子病历命名实体识别研究

  2. 随着医疗信息化的发展,医院产生了大量的医疗数据信息,积累了庞大的医疗电子病历数据。电子病历(EMR)是具有非结构化句子和多种概念表达,为医学信息提取提供了丰富的信息。然而,庞大的数据信息严重影响处理效率,因此提取电子病历中的命名实体成为研究的热点问题。为提高医院对复杂数据的处理效率,减轻工作人员的压力,本文提出了一种基于条件随机场(CRF)模型和特征模板结合的算法,来识别中文电子病历中的命名实体单元,识别准确率可以达到92.9%,可以有效地识别电子病历命名实体。基于本文采用的方法可以来结构化电子
  3. 所属分类:Python

    • 发布日期:2019-07-27
    • 文件大小:14680064
    • 提供者:m0_37520426
  1. Medical-text-zero-watermarking-scheme-based-on-named-entity-recognition-源码

  2. MedicalNamedEntityRecognition CCKS2017中文名称为医学命名实体识别工具,使用带有字符嵌入的双向lstm和crf模型。数据样本(一般醒目,出院情况,病史情况,病史特点,诊疗经过)与转换版本,训练脚本,预训练模型,可用于序列标注研究。把玩和PK使用。 项目介绍 电子病历结构化是让计算机理解病历,应用病历的基础。基于对病历的结构化,可以计算出症状,疾病,药品,检查检验等多个知识点之间的关系及其概率,并构成医疗领域的知识图谱,进一步优化医生的工作。 CCKS2018
  3. 所属分类:其它

    • 发布日期:2021-03-08
    • 文件大小:50176
    • 提供者:weixin_42143092