您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于GA—Elman神经网络的电池劣化程度预测研究

  2. 摘要:阀控铅酸蓄电池的老化机理复杂.劣化程度受多种因素影响.因此较难预测.在分析影响蓄电池劣化程度的多种因素的基础上,采用Elman神经网络方法对电池劣化程度预测建立模型,并通过遗传算法对预测模型中的初始权值和阈值进行优化,根据浅度放电的测量数据进行劣化程度的预测.仿真结果表明:该模型达到了对电池劣化程度准确预测的目的.通过与实测数据的对比,证明该模型具有较高的有效性.   蓄电池目前被广泛地应用于汽车.电动车.UPS电源以及EPS电源系统等多个领域.阀控铅酸蓄电池(Valve Regulat
  3. 所属分类:其它

    • 发布日期:2020-10-20
    • 文件大小:218112
    • 提供者:weixin_38600341
  1. 基于GA—Elman神经网络的电池劣化程度预测研究

  2. 摘要:阀控铅酸蓄电池的老化机理复杂.劣化程度受多种因素影响.因此较难预测.在分析影响蓄电池劣化程度的多种因素的基础上,采用Elman神经网络方法对电池劣化程度预测建立模型,并通过遗传算法对预测模型中的初始权值和阈值进行优化,根据浅度放电的测量数据进行劣化程度的预测.仿真结果表明:该模型达到了对电池劣化程度准确预测的目的.通过与实测数据的对比,证明该模型具有较高的有效性.   蓄电池目前被广泛地应用于汽车.电动车.UPS电源以及EPS电源系统等多个领域.阀控铅酸蓄电池(Valve Regulat
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:251904
    • 提供者:weixin_38713306