您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于LSTM神经网络的煤矿突水预测

  2. 针对煤层底板突水预测问题,在总结现有突水预测方法和理论的基础上,通过特征选择实验得出水压、距工作面距离、砂岩段厚度、煤层厚度、煤层倾角、断层落差、是否裂隙带、开采面积、采高、走向长度是影响突水发生的主要因素,这些因素具有复杂、非线性的特点。提出基于长短时记忆(LSTM)神经网络构建的突水预测模型,将煤矿突水实例的数据作为样本数据对模型进行训练。最后,将LSTM神经网络模型与遗传算法–反向传播(GA-BP)神经网络模型和反向传播(BP)神经网络模型进行对比实验。实验结果表明,LSTM神经网络模型在
  3. 所属分类:其它

    • 发布日期:2020-04-17
    • 文件大小:387072
    • 提供者:weixin_38582909