您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于Lucas-Kanade算法的最大Gabor相似度大姿态人脸识别

  2. 在人脸识别科学研究和实际应用领域中,大角度姿态是影响人脸识别结果的主要因素之一,成为限制人脸识别技术进步的难点,而姿态的校正归一化是解决该问题的常用手段。首先通过加权的LK(Lucas-Kanade)算法得到侧脸块和对应正脸块的仿射变换参数,基于最大Gabor相似度寻找校正人脸姿态的最优参数。然后,以每一人脸块最优参数得到的平均Gabor相似度作为这一块人脸的识别权重,可以增加大姿态人脸识别的精度和稳健性。在FERET人脸数据库中进行了实验,当水平偏转角度为45°时,准确率达到97.3%,证明本
  3. 所属分类:其它

    • 发布日期:2021-01-26
    • 文件大小:3145728
    • 提供者:weixin_38723691