针对目前指关节纹识别方法鲁棒性差的问题,提出了一种基于非下采样的Shearlet变换(NSST)和Tetrolet能量特征的指关节纹识别方法。首先,采用直方图均衡化调整图像的灰度,以减少光照分布不均对识别系统产生的影响。其次,利用NSST及其逆变换得到去噪后的重构图像,并对其进行Tetrolet变换,建立低频图像的能量曲面。最后,将不同图像的能量曲面作差,得到能量差曲面,进一步计算曲面的方差,并以此为依据对不同指关节纹图像进行分类识别。在HKPU-FKP、IIT Delhi-FK、和HKPU-C