点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 基于RBF神经网络的瓦斯涌出量预测
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
耦合神经网络在瓦斯涌出量动态预测中的应用
为了更有效、准确地对煤矿瓦斯涌出量进行预测,保障煤矿生产安全,提出了一种基于改进果蝇算法(MFOA)优化Elman神经网络(ENN)的智能动态预测方法.首先,利用主成分分析法(PCA)对煤矿瓦斯涌出量监测数据进行降维处理;其次,引入果蝇算法以改进的自适应搜索步长进行搜索,以此实现对ENN网络参数的全局寻优,从而建立基于MFOA-ENN的煤矿瓦斯涌出量动态预测模型,并对预测效果进行了验证.实验结果表明:MFOA-ENN模型的平均相对变动值为0.003 7、均方根误差为0.102 6、平均相对误差为
所属分类:
其它
发布日期:2020-04-29
文件大小:975872
提供者:
weixin_38623707
优化神经网络模型在瓦斯涌出预测中的应用
为准确预测矿井瓦斯涌出量,降低瓦斯涌出带来的危害,通过灰色关联分析理论得出影响瓦斯涌出量的主要因素为原始瓦斯含量>煤层厚度>煤层埋深>工作面长度>推进速度>煤层倾角,通过优化RBF模型对瓦斯涌出量预测模型进行构建,并运用Matlab仿真模拟预测矿井瓦斯涌出量,结果显示:基于优化RBF模型仿真模拟预测得出的矿井瓦斯涌出量与实际瓦斯涌出量非常接近,5组预测数据中,最大误差为3.6%,最小误差为0.8%,平均误差为1.84%,预测精度较高,可应用于矿井瓦斯涌出量的预测当中
所属分类:
其它
发布日期:2020-05-30
文件大小:266240
提供者:
weixin_38715048
基于多粒子群优化的RBF神经网络瓦斯涌出量模型研究
针对井下瓦斯涌出量预测的问题,建立RBF神经网络,引入多粒子群优化神经网络模型。多粒子群算法分割经典的单粒子群算法为多个线程,同时优化了学习因子和惯性权重,这样既增加算法的遍历性又使算法的二次精细搜索能力增强。
所属分类:
其它
发布日期:2020-07-08
文件大小:225280
提供者:
weixin_38686267
基于RBF神经网络的瓦斯涌出量预测
传统瓦斯涌出量预测方法存在一定的局限性,预测精度不能满足要求。为了提高瓦斯涌出量预测精度,采用RBF神经网络对瓦斯涌出量相关数据进行建模。通过训练13组样本,对5组数据进行预测,分析了隐层神经元个数对预测精度的影响,并与同结构的BP神经网络预测结果进行了对比。研究结果证明了RBF神经网络在瓦斯涌出量预测中的有效性。
所属分类:
其它
发布日期:2020-07-05
文件大小:241664
提供者:
weixin_38544978
基于RBF神经网络的煤矿瓦斯涌出量预测
煤矿瓦斯涌出量预测是矿井安全中的一个关键和热点问题。煤矿瓦斯涌出量涉及很多因素,例如日产量、日进度、煤层厚度、煤层间距、煤层深度等,瓦斯涌出量预测是一个非线性问题。径向基神经网络是目前应用非常广泛的一种局部神经网络模型,在函数回归、序列预测中具有很好的应用效果。文中提出了将径向基神经网络用于预测煤矿瓦斯涌出量的想法,并分析了可行性。
所属分类:
其它
发布日期:2020-07-05
文件大小:208896
提供者:
weixin_38747978