针对粒子群优化算法(PSO) 在处理高维复杂函数时容易陷入局部极值、收敛速度慢的缺陷, 从系统的认知分析过程和角度出发, 提出一种基于诺兰模型(NM) 思想的改进PSO 算法. 该算法在Tent 混沌映射选择的参数的基础上, 结合NM信息融合和协调的思想, 在速度更新过程中增加均衡项, 并设计粒子群的欧氏距离指数以防止早熟, 从而实现对粒子的自动调整、保证多样性和提高算法的全局搜索能力. 最后, 运用典型函数对所提出算法进行测试, 并与最新相关算法进行比较, 结果表明, 所提出算法在全局搜索能力