点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 基于k-d树分区的聚类算法并行加速策略
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
基于k-d树分区的聚类算法并行加速策略
针对传 统K-Means算法存在准确率低、聚类速度慢的问题,从K-Means算法优化和Flink框架并行层面对K-Means算法优化。为避免算法陷入局部最优解,采用质心间最大距离原则选出k个质心;为提高大数据量下的K-Means聚类速度,提出用k-d树算法划分数据集实现操作算子并行化,设置多个Task Manager数目和CPU核数加速F-Kmeans算法的执行。实验结果表明,较K-Means算法,F-Kmeans算法的准确率提高了约3.6%;F-Kmeans算法在DataSource耗时降低了
所属分类:
其它
发布日期:2021-03-07
文件大小:929792
提供者:
weixin_38624315