您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 文本挖掘tmSVM开源项目包含Python和Java两种版本带参考文档

  2. 文本挖掘tmSVM开源项目集成libSVM和liblinear包含Python和Java两种版本带PDF源码参考文档 简介 文本挖掘无论在学术界还是在工业界都有很广泛的应用场景。而文本分类是文本挖掘中一个非常重要的手段与技术。现有的分类技术都已经非常成熟,SVM、KNN、Decision Tree、AN、NB在不同的应用中都展示出较好的效果,前人也在将这些分类算法应用于文本分类中做出许多出色的工作。但在实际的商业应用中,仍然有很多问题没有很好的解决,比如文本分类中的高维性和稀疏性、类别的不平衡
  3. 所属分类:Python

    • 发布日期:2014-02-23
    • 文件大小:3145728
    • 提供者:vcfriend
  1. MachineLearning-master-python.zip

  2. 属于网络下载资源,感谢原作者的贡献。 ##目录介绍 - **DeepLearning Tutorials** 这个文件夹下包含一些深度学习算法的实现代码,以及具体的应用实例,包含: Keras使用进阶。介绍了怎么保存训练好的CNN模型,怎么将CNN用作特征提取,怎么可视化卷积图。 [keras_usage]介绍了一个简单易用的深度学习框架keras,用经典的Mnist分类问题对该框架的使用进行说明,训练一个CNN,总共不超过30行代码。 将卷积神经网络CNN应用于人脸识别的一个demo,人脸数
  3. 所属分类:专业指导

    • 发布日期:2016-07-04
    • 文件大小:1048576
    • 提供者:qq_33042687
  1. 空中写字与数字识别

  2. 使用说明:手动框出特定部位,使用KCF算法对其进行跟踪,绘出轨迹图案,再将手写图案送去分类器分类。该程序实现的分类器有opencv自带的knn、svm,以及用tensorflow实现的基于minst数据集训练出的cnn模型、softmax模型。文档包含训练模型所需的python代码。
  3. 所属分类:C++

    • 发布日期:2017-04-03
    • 文件大小:80896
    • 提供者:hyk_1996
  1. KNN算法的Python实现

  2. 基于Python3.6的KNN邻近算法,通过比较两组数据的多维特征待分类数据进行分类!
  3. 所属分类:机器学习

    • 发布日期:2019-01-25
    • 文件大小:9216
    • 提供者:qq_43056445
  1. 基于python实现KNN分类算法

  2. 主要为大家详细介绍了基于python实现KNN分类算法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
  3. 所属分类:其它

    • 发布日期:2020-09-19
    • 文件大小:58368
    • 提供者:weixin_38526225
  1. 用python实现k近邻算法的示例代码

  2. K近邻算法(或简称kNN)是易于理解和实现的算法,而且是你解决问题的强大工具。 什么是kNN kNN算法的模型就是整个训练数据集。当需要对一个未知数据实例进行预测时,kNN算法会在训练数据集中搜寻k个最相似实例。对k个最相似实例的属性进行归纳,将其作为对未知实例的预测。 相似性度量依赖于数据类型。对于实数,可以使用欧式距离来计算。其他类型的数据,如分类数据或二进制数据,可以用汉明距离。 对于回归问题,会返回k个最相似实例属性的平均值。对于分类问题,会返回k个最相似实例属性出现最多的属性。 k
  3. 所属分类:其它

    • 发布日期:2020-12-25
    • 文件大小:62464
    • 提供者:weixin_38695159
  1. Python实现基于KNN算法的笔迹识别功能详解

  2. 本文实例讲述了Python实现基于KNN算法的笔迹识别功能。分享给大家供大家参考,具体如下: 需要用到: Numpy库 Pandas库 手写识别数据 点击此处本站下载。 数据说明: 数据共有785列,第一列为label,剩下的784列数据存储的是灰度图像(0~255)的像素值 28*28=784 KNN(K近邻算法): 从训练集中找到和新数据最接近的K条记录,根据他们的主要分类来决定新数据的类型。 这里的主要分类,可以有不同的判别依据,比如“最多”,“最近邻”,或者是“距离加权”。
  3. 所属分类:其它

    • 发布日期:2020-12-25
    • 文件大小:108544
    • 提供者:weixin_38608866
  1. 基于python实现KNN分类算法

  2. kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。 kNN方法在类别决策时,只与极少量的相邻样本有关。由于kNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,kNN方法较其他方法更为适合。 通俗简单的说,就是将这个样本进行分类,怎么分类,就是用该样本的
  3. 所属分类:其它

    • 发布日期:2020-12-24
    • 文件大小:56320
    • 提供者:weixin_38728277
  1. 应用OpenCV和Python进行SIFT算法的实现详解

  2. 应用OpenCV和Python进行SIFT算法的实现 如下图为进行测试的gakki101和gakki102,分别验证基于BFmatcher、FlannBasedMatcher等的SIFT算法,对比其优劣。为体现出匹配效果对于旋转特性的优势,将图gakki101做成具有旋转特性的效果。 基于BFmatcher的SIFT实现 BFmatcher(Brute-Force Matching)暴力匹配,应用BFMatcher.knnMatch( )函数来进行核心的匹配,knnMatch(k-neares
  3. 所属分类:其它

    • 发布日期:2021-01-01
    • 文件大小:1048576
    • 提供者:weixin_38564598
  1. 在Python中的轨迹分析和熊猫学习套件的学习方法:形成点集的轨迹基于Grid表示形式将轨迹建模为字符串.Benchmarked KNN,Random Forest,Logistic回归分类算法可对轨迹进行有效分类-源码

  2. Python中的轨迹分析和分类(Pandas和Scikit Learn) 一项针对数据挖掘研究生课程的大学项目。 给我们一个trainset,其中地理点与时间间隔成对。 首先,我们清理数据集,然后形成轨迹(具有相应的路线ID)。 本部分的最后一步是根据_their的total_distance和最大距离(它们的两个点之间)过滤掉一些轨迹。 该项目的目标首先是计算test_set_a1 / a2.csv和train_set.csv的轨迹之间的轨迹相似度。 用于该算法的算法是: 快速动态时
  3. 所属分类:其它

    • 发布日期:2021-02-04
    • 文件大小:25165824
    • 提供者:weixin_42113456
  1. ITU-ACM-20-21-Spring-Machine-Learning-源码

  2. ITU-ACM-20-21-Spring机器学习 讲师 穆罕默德·伊耶特·阿特斯(MehmetYiğitAteş) 计算机工程#2 ITU 先决条件 Python编程语言的基本知识。 微积分和线性代数的基本知识。 目标 使参与者熟悉基本的机器学习主题,例如分类和回归 让与会者熟悉机器学习算法的工作机制和数学 人工神经网络介绍 介绍NumPy计算库的基础 教学大纲 #日期 #话题 #描述 16.03.2021 机器学习导论 机器学习的工作原理,NumPy和梯度下降 23.03.2021 线
  3. 所属分类:其它

    • 发布日期:2021-03-30
    • 文件大小:4194304
    • 提供者:weixin_42131601