目标模型更新中存在的模型漂移问题,是影响视频跟踪结果的一个重要因素。针对这一难题,提出了一种新的基于前景分割的目标跟踪算法。算法通过引入条件随机场(CRF)模型对跟踪区域和非跟踪区域的时空关系进行建模,实现对图像序列中像素点的标记,标记为跟踪目标或背景,并使用在线学习方法,根据场景的变化调整CRF模型的参数。跟踪过程中,通过对CRF模型的求解,得到最优的标记场和目标像素的置信图像;利用置信图像,结合目标模型的相似性度量定位整个目标;根据目标区域内的标记结果,使用一种选择性采样的方式更新目标模型,